资源类型

期刊论文 207

年份

2023 18

2022 16

2021 15

2020 17

2019 16

2018 21

2017 10

2016 8

2015 7

2014 3

2013 12

2012 4

2011 11

2010 4

2009 9

2008 8

2007 5

2006 4

2005 2

2004 2

展开 ︾

关键词

机器学习 4

材料设计 4

材料 3

生物质 3

冶金 2

增材制造 2

新材料 2

材料科学 2

生物医学材料 2

颠覆性技术 2

2035 1

3D 打印 1

4D打印 1

FRP 聚合物 1

MCDB 1

PEDOT:PSS 1

SUF钢板 1

三碳经济 1

中国 1

展开 ︾

检索范围:

排序: 展示方式:

Nanostructural thermoelectric materials and their performance

Kai-Xuan CHEN, Min-Shan LI, Dong-Chuan MO, Shu-Shen LYU

《能源前沿(英文)》 2018年 第12卷 第1期   页码 97-108 doi: 10.1007/s11708-018-0543-5

摘要: In this review, an attempt was made to introduce the traditional concepts and materials in thermoelectric application and the recent development in searching high-performance thermoelectric materials. Due to the use of nanostructural engineering, thermoelectric materials with a high figure of merit are designed, leading to their blooming application in the energy field. One dimensional nanotubes and nanoribbons, two-dimensional planner structures, nanocomposites, and heterostructures were summarized. In addition, the state-of-the-art theoretical calculation in the prediction of thermoelectric materials was also reviewed, including the molecular dynamics (MD), Boltzmann transport equation, and non-equilibrium Green’s function. The combination of experimental fabrication and first-principles prediction significantly promotes the discovery of new promising candidates in the thermoelectric field.

关键词: nanostructural     low-dimensional     thermoelectric material     figure of merit     first-principles    

温差发电的热力过程研究及材料的塞贝克系数测定

贾磊,胡芃,陈则韶

《中国工程科学》 2005年 第7卷 第12期   页码 31-34

摘要:

建立了半导体温差发电器件的基本模型;从稳态的热传导方程出发,对发电器件进行了热力学分析,推导出P型和N型半导体内部的温度分布函数及输出功率和发电效率的表达式;测定了一种Bi-Te-Sb-Se半导体热电材料在低温下的塞贝克系数随温度的变化关系,绘制了曲线并进行数值拟合;结果表明,该种半导体热电材料在低温下性能不佳,需改进配方或生产工艺方可使用。

关键词: 半导体     温差发电     热力过程     塞贝克系数    

Recent development and application of thin-film thermoelectric cooler

Yuedong Yu, Wei Zhu, Xixia Kong, Yaling Wang, Pengcheng Zhu, Yuan Deng

《化学科学与工程前沿(英文)》 2020年 第14卷 第4期   页码 492-503 doi: 10.1007/s11705-019-1829-9

摘要: Recently, the performance and fabrication of thin-film thermoelectric materials have been largely enhanced. Based on this enhancement, the thin-film thermoelectric cooler (TEC) is becoming a research hot topic, due to its high cooling flux and microchip level size. To fulfill a thin-film TEC, interfacial problems are unavoidable, as they may largely reduce the properties of a thin-film TEC. Moreover, the architecture of a thin-film TEC should also be properly designed. In this review, we introduced the enhancement of thermoelectric properties of (Bi,Sb) (Te,Se) solid solution materials by chemical vapor deposition, physical vapor deposition and electrodeposition. Then, the interfacial problems, including contact resistance, interfacial diffusion and thermal contact resistance, were discussed. Furthermore, the design, fabrication, as well as the performance of thin-film TECs were summarized.

关键词: thin-film thermoelectric cooler     interfaces     cooling flux     TE device fabrication    

Developments in semiconductor thermoelectric materials

Laifeng LI, Zhen CHEN, Min ZHOU, Rongjin HUANG

《能源前沿(英文)》 2011年 第5卷 第2期   页码 125-136 doi: 10.1007/s11708-011-0150-1

摘要: A surge in interest in developing alternative renewable energy technologies has been observed in recent years. In particular, thermoelectrics has drawn attention because thermoelectric effects enable direct conversion between thermal and electrical energy, and provide power generation and refrigeration alternatives. During the past decade, the performance of thermoelectric materials has been considerably improved; however, many challenges continue to exist. Developing thermoelectric materials with superior performance means tailoring interconnected thermoelectric physical parameters-electrical conductivities, Seebeck coefficients, and thermal conductivities for a crystalline system. The objectives of this paper are to introduce the recent developments in semiconductor thermoelectric materials, and briefly summarize the applications of such materials.

关键词: thermoelectric materials     thermoelectric figure of merit     applications    

Impacts of cone-structured interface and aperiodicity on nanoscale thermal transport in Si/Ge superlattices

Pengfei JI, Yiming RONG, Yuwen ZHANG, Yong TANG

《能源前沿(英文)》 2018年 第12卷 第1期   页码 137-142 doi: 10.1007/s11708-018-0532-8

摘要: Si/Ge superlattices are promising thermoelectric materials to convert thermal energy into electric power. The nanoscale thermal transport in Si/Ge superlattices is investigated via molecular dynamics (MD) simulation in this short communication. The impact of Si and Ge interface on the cross-plane thermal conductivity reduction in the Si/Ge superlattices is studied by designing cone-structured interface and aperiodicity between the Si and Ge layers. The temperature difference between the left and right sides of the Si/Ge superlattices is set up for nonequilibrium MD simulation. The spatial distribution of temperature is recorded to examine whether the steady-state has been reached. As a crucial factor to quantify thermal transport, the temporal evolution of heat flux flowing through Si/Ge superlattices is calculated. Compared with the even interface, the cone-structured interface contributes remarkable resistance to the thermal transport, whereas the aperiodic arrangement of Si and Ge layers with unequal thicknesses has a marginal influence on the reduction of effective thermal conductivity. The interface with divergent cone-structure shows the most excellent performance of all the simulated cases, which brings a 33% reduction of the average thermal conductivity to the other Si/Ge superlattices with even, convergent cone-structured interfaces and aperiodic arrangements. The design of divergent cone-structured interface sheds promising light on enhancing the thermoelectric efficiency of Si/Ge based materials.

关键词: thermoelectric material     thermal transport     Si/Gesuperlattics     molecular dynamics (MD)    

MEMS-based thermoelectric infrared sensors: A review

Dehui XU, Yuelin WANG, Bin XIONG, Tie LI

《机械工程前沿(英文)》 2017年 第12卷 第4期   页码 557-566 doi: 10.1007/s11465-017-0441-2

摘要:

In the past decade, micro-electromechanical systems (MEMS)-based thermoelectric infrared (IR) sensors have received considerable attention because of the advances in micromachining technology. This paper presents a review of MEMS-based thermoelectric IR sensors. The first part describes the physics of the device and discusses the figures of merit. The second part discusses the sensing materials, thermal isolation microstructures, absorber designs, and packaging methods for these sensors and provides examples. Moreover, the status of sensor implementation technology is examined from a historical perspective by presenting findings from the early years to the most recent findings.

关键词: thermoelectric infrared sensor     CMOS-MEMS     thermopile     micromachining     wafer-level package    

Properties of Ag-doped Bi-Sb alloys as thermoelectric conversion materials for solid state refrigeration

Wen XU, Laifeng LI, Rongjin HUANG, Min ZHOU, Liyun ZHENG, Linghui GONG, Chunmei SONG

《能源前沿(英文)》 2009年 第3卷 第1期   页码 90-93 doi: 10.1007/s11708-009-0005-1

摘要: The energy conversion properties of Bi-Sb system thermoelectric materials doped by Ag was investigated. Bi Sb Ag ( =0, 1, 2, 3, 4) alloys with Ag substitution for Sb were synthesized by mechanical alloying and then pressed under 5 GPa at 523 K for 30 min. The phase structure of the alloys was characterized by X-ray diffraction. The electric conductivities and the seebeck coefficients were measured at the temperature range of 80-300 K. The results reveal that the electric conductivities of the Ag-doped Bi-Sb alloys are highly improved. The power factor of Bi Sb Ag reaches a maximum value of 2.98×10 W/(K ?m) at 255 K, which is about three times that of the un-doped sample Bi Sb at the same temperature.

关键词: thermoelectric conversion materials     high-pressure sintering     thermoelectric properties    

Evaluation of the power-generation capacity of wearable thermoelectric power generator

Yang YANG, Jing LIU,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 346-357 doi: 10.1007/s11708-010-0112-z

摘要: Employing thermoelectric generators (TEGs) to gather heat dissipating from the human body through the skin surface is a promising way to supply electronic power to wearable and pocket electronics. The uniqueness of this method lies in its direct utilization of the temperature difference between the environment and the human body, and complete elimination of power maintenance problems. However, most of the previous investigations on thermal energy harvesters are confined to the TEG and electronic system themselves because of the low quality of human energy. We evaluate the energy generation capacity of a wearable TEG subject to various conditions based on biological heat transfer theory. Through numerical simulation and corresponding parametric studies, we find that the temperature distribution in the thermopiles affects the criterion of the voltage output, suggesting that the temperature difference in a single point can be adopted as the criterion for uniform temperature distribution. However, the criterion has to be shifted to the sum of temperature difference on each thermocouple when the temperature distribution is inconsistent. In addition, the performance of the thermal energy harvester can be easily influenced by environmental conditions, as well as the physiological state and physical characteristics of the human body. To further validate the calculation results for the wearable TEG, a series of conceptual experiments are performed on a number of typical cases. The numerical simulation provides a good overview of the electricity generation capability of the TEG, which may prove useful in the design of future thermal energy harvesters.

关键词: thermal energy harvester     thermoelectric generator     biological heat transfer     power generating capacity    

Effect of non-uniform illumination on performance of solar thermoelectric generators

Ershuai YIN, Qiang LI, Yimin XUAN

《能源前沿(英文)》 2018年 第12卷 第2期   页码 239-248 doi: 10.1007/s11708-018-0533-7

摘要: Solar thermoelectric generators (STEGs) are heat engines which can generate electricity from concentrated sunlight. The non-uniform illumination caused by the optical concentrator may affect the performance of solar thermoelectric generators. In this paper, a three-dimensional finite element model of solar thermoelectric generators is established. The two-dimensional Gaussian distribution is employed to modify the illumination profiles incident on the thermoelectric generator. Six non-uniformities of solar illumination are investigated while keeping the total energy constant. The influences of non-uniform illumination on the temperature distribution, the voltage distribution, and the maximum output power are respectively discussed. Three thermoelectric generators with 32, 18 and 8 pairs of thermocouples are compared to investigate their capability under non-uniform solar radiation. The result shows that the non-uniformity of the solar illumination has a great effect on the temperature distribution and the voltage distribution. Central thermoelectric legs can achieve a larger temperature difference and generate a larger voltage than peripheral ones. The non-uniform solar illumination will weaken the capability of the TE generator, and the maximum output power decrease by 1.4% among the range of non-uniformity studied in this paper. Reducing the number of the thermoelectric legs for non-uniform solar illumination can greatly increase the performance of the thermoelectric generator.

关键词: solar thermoelectric generators     non-uniform solar illumination     performance evaluation     solar energy    

A thermoelectric generator and water-cooling assisted high conversion efficiency polycrystalline silicon

Zekun LIU, Shuang YUAN, Yi YUAN, Guojian LI, Qiang WANG

《能源前沿(英文)》 2021年 第15卷 第2期   页码 358-366 doi: 10.1007/s11708-020-0712-1

摘要: Solar energy has been increasing its share in the global energy structure. However, the thermal radiation brought by sunlight will attenuate the efficiency of solar cells. To reduce the temperature of the photovoltaic (PV) cell and improve the utilization efficiency of solar energy, a hybrid system composed of the PV cell, a thermoelectric generator (TEG), and a water-cooled plate (WCP) was manufactured. The WCP cannot only cool the PV cell, but also effectively generate additional electric energy with the TEG using the waste heat of the PV cell. The changes in the efficiency and power density of the hybrid system were obtained by real time monitoring. The thermal and electrical tests were performed at different irradiations and the same experiment temperature of 22°C. At a light intensity of 1000 W/m , the steady-state temperature of the PV cell decreases from 86.8°C to 54.1°C, and the overall efficiency increases from 15.6% to 21.1%. At a light intensity of 800 W/m , the steady-state temperature of the PV cell decreases from 70°C to 45.8°C, and the overall efficiency increases from 9.28% to 12.59%. At a light intensity of 400 W/m , the steady-state temperature of the PV cell decreases from 38.5°C to 31.5°C, and the overall efficiency is approximately 3.8%, basically remain unchanged.

关键词: photovoltaic (PV)     thermoelectric generator     conversion efficiency     hybrid energy systems     water-cooled plate (WCP)    

Multifunctional, Wearable, and Wireless Sensing System via Thermoelectric Fabrics

Xinyang He,Jiaxin Cai,Mingyuan Liu,Xuepeng Ni,Wendi Liu,Hanyu Guo,Jianyong Yu,Liming Wang,Xiaohong Qin,

《工程(英文)》 doi: 10.1016/j.eng.2023.05.026

摘要: Flexible thermoelectric materials play an important role in smart wearables, such as wearable power generation, self-powered sensing, and personal thermal management. However, with the rapid development of Internet of Things (IoT) and artificial intelligence (AI), higher standards for comfort, multifunctionality, and sustainable operation of wearable electronics have been proposed, and it remains challenging to meet all the requirements of currently reported thermoelectric devices. Herein, we present a multifunctional, wearable, and wireless sensing system based on a thermoelectric knitted fabric with over 600 mm·s−1 air permeability and a stretchability of 120%. The device coupled with a wireless transmission system realizes self-powered monitoring of human respiration through an mobile phone application (APP). Furthermore, an integrated thermoelectric system was designed to combine photothermal conversion and passive radiative cooling, enabling the characteristics of being powered by solar-driven in-plane temperature differences and monitoring outdoor sunlight intensity through the APP. Additionally, we decoupled the complex signals of resistance and thermal voltage during deformation under solar irradiation based on the anisotropy of the knitted fabrics to enable the device to monitor and optimize the outdoor physical activity of the athlete via the APP. This novel thermoelectric fabric-based wearable and wireless sensing platform has promising applications in next-generation smart textiles.

关键词: Thermoelectric fabrics     Wearable device     Wireless     Multifunctional sensing system     Outdoor wearable signal monitoring    

System-level Pareto frontiers for on-chip thermoelectric coolers

Sevket U. YURUKER, Michael C. FISH, Zhi YANG, Nicholas BALDASARO, Philip BARLETTA, Avram BAR-COHEN, Bao YANG

《能源前沿(英文)》 2018年 第12卷 第1期   页码 109-120 doi: 10.1007/s11708-018-0540-8

摘要: The continuous rise in heat dissipation of integrated circuits necessitates advanced thermal solutions to ensure system reliability and efficiency. Thermoelectric coolers are among the most promising techniques for dealing with localized on-chip hot spots. This study focuses on establishing a holistic optimization methodology for such thermoelectric coolers, in which a thermoelectric element’s thickness and the electrical current are optimized to minimize source temperature with respect to ambient, when the thermal and electrical parasitic effects are considered. It is found that when element thickness and electrical current are optimized for a given system architecture, a “heat flux vs. temperature difference” Pareto frontier curve is obtained, indicating that there is an optimum thickness and a corresponding optimum current that maximize the achievable temperature reduction while removing a particular heat flux. This methodology also provides the possible system level Δ ’s that can be achieved for a range of heat fluxes, defining the upper limits of thermoelectric cooling for that architecture. In this study, use was made of an extensive analytical model, which was verified using commercially available finite element analysis software. Through the optimization process, 3 pairs of master curves were generated, which were then used to compose the Pareto frontier for any given system architecture. Finally, a case study was performed to provide an in-depth demonstration of the optimization procedure for an example application.

关键词: thermoelectric cooling     thermal management     optimization     high flux electronics    

Near-field radiative thermoelectric energy converters: a review

Eric TERVO, Elham BAGHERISERESHKI, Zhuomin ZHANG

《能源前沿(英文)》 2018年 第12卷 第1期   页码 5-21 doi: 10.1007/s11708-017-0517-z

摘要: Radiative thermoelectric energy converters, which include thermophotovoltaic cells, thermoradiative cells, electroluminescent refrigerators, and negative electroluminescent refrigerators, are semiconductor p-n devices that either generate electricity or extract heat from a cold body while exchanging thermal radiation with their surroundings. If this exchange occurs at micro or nanoscale distances, power densities can be greatly enhanced and near-field radiation effects may improve performance. This review covers the fundamentals of near-field thermal radiation, photon entropy, and nonequilibrium effects in semiconductor diodes that underpin device operation. The development and state of the art of these near-field converters are discussed in detail, and remaining challenges and opportunities for progress are identified.

关键词: energy conversion systems     luminescent refrigeration     near-field radiation     thermophotovoltaic     thermoradiative cell    

A low power, eco-friendly multipurpose thermoelectric refrigerator

N. Jagan Mohan REDDY

《能源前沿(英文)》 2016年 第10卷 第1期   页码 79-87 doi: 10.1007/s11708-015-0380-8

摘要: There has been an immense endeavor to mitigate global warming in spite of which it has only been worse. This paper presents the design and implementation of a low power and eco-friendly refrigeration system using the thermoelectric effect. The conventional refrigerators make use of complex mechanisms which involves synchronous operation of various units, namely the compressor, condensers, expansion valves, evaporator, refrigerant and so on. But a thermoelectric refrigerator exploits the principle of the Peltier effect, thus avoiding the utilization of these complex components. This even helps curb the release of harmful chlorofluorocarbons (CFCs) into the atmosphere which contributes to the increase in global temperature. Moreover, the temperature can be controlled and set to required values with the help of a microcontroller. Hence, this can be used both for domestic and commercial purposes. The unit does not eject any harmful gases. Therefore, the heat expelled from the unit can be tapped for heating utilities, making the use of this device versatile in its application. Thus this proposal aims not only at reducing the air pollutants by not contributing to it but also at reducing the power consumption.

关键词: low power     eco-friendly     multipurpose     TEC-12706     Peltier effect     microcontroller (P89V51RD2BN)     temperature control    

Liquid metal material genome: Initiation of a new research track towards discovery of advanced energy

Lei WANG, Jing LIU

《能源前沿(英文)》 2013年 第7卷 第3期   页码 317-332 doi: 10.1007/s11708-013-0271-9

摘要: As the basis of modern industry, the roles materials play are becoming increasingly vital in this day and age. With many superior physical properties over conventional fluids, the low melting point liquid metal material, especially room-temperature liquid metal, is recently found to be uniquely useful in a wide variety of emerging areas from energy, electronics to medical sciences. However, with the coming enormous utilization of such materials, serious issues also arise which urgently need to be addressed. A biggest concern to impede the large scale application of room-temperature liquid metal technologies is that there is currently a strong shortage of the materials and species available to meet the tough requirements such as cost, melting point, electrical and thermal conductivity, etc. Inspired by the Material Genome Initiative as issued in 2011 by the United States of America, a more specific and focused project initiative was proposed in this paper—the liquid metal material genome aimed to discover advanced new functional alloys with low melting point so as to fulfill various increasing needs. The basic schemes and road map for this new research program, which is expected to have a worldwide significance, were outlined. The theoretical strategies and experimental methods in the research and development of liquid metal material genome were introduced. Particularly, the calculation of phase diagram (CALPHAD) approach as a highly effective way for material design was discussed. Further, the first-principles (FP) calculation was suggested to combine with the statistical thermodynamics to calculate the thermodynamic functions so as to enrich the CALPHAD database of liquid metals. When the experimental data are too scarce to perform a regular treatment, the combination of FP calculation, cluster variation method (CVM) or molecular dynamics (MD), and CALPHAD, referred to as the mixed FP-CVM-CALPHAD method can be a promising way to solve the problem. Except for the theoretical strategies, several parallel processing experimental methods were also analyzed, which can help improve the efficiency of finding new liquid metal materials and reducing the cost. The liquid metal material genome proposal as initiated in this paper will accelerate the process of finding and utilization of new functional materials.

关键词: liquid metal material genome     energy material     material discovery     advanced material     room-temperature liquid alloy     thermodynamics     phase diagram    

标题 作者 时间 类型 操作

Nanostructural thermoelectric materials and their performance

Kai-Xuan CHEN, Min-Shan LI, Dong-Chuan MO, Shu-Shen LYU

期刊论文

温差发电的热力过程研究及材料的塞贝克系数测定

贾磊,胡芃,陈则韶

期刊论文

Recent development and application of thin-film thermoelectric cooler

Yuedong Yu, Wei Zhu, Xixia Kong, Yaling Wang, Pengcheng Zhu, Yuan Deng

期刊论文

Developments in semiconductor thermoelectric materials

Laifeng LI, Zhen CHEN, Min ZHOU, Rongjin HUANG

期刊论文

Impacts of cone-structured interface and aperiodicity on nanoscale thermal transport in Si/Ge superlattices

Pengfei JI, Yiming RONG, Yuwen ZHANG, Yong TANG

期刊论文

MEMS-based thermoelectric infrared sensors: A review

Dehui XU, Yuelin WANG, Bin XIONG, Tie LI

期刊论文

Properties of Ag-doped Bi-Sb alloys as thermoelectric conversion materials for solid state refrigeration

Wen XU, Laifeng LI, Rongjin HUANG, Min ZHOU, Liyun ZHENG, Linghui GONG, Chunmei SONG

期刊论文

Evaluation of the power-generation capacity of wearable thermoelectric power generator

Yang YANG, Jing LIU,

期刊论文

Effect of non-uniform illumination on performance of solar thermoelectric generators

Ershuai YIN, Qiang LI, Yimin XUAN

期刊论文

A thermoelectric generator and water-cooling assisted high conversion efficiency polycrystalline silicon

Zekun LIU, Shuang YUAN, Yi YUAN, Guojian LI, Qiang WANG

期刊论文

Multifunctional, Wearable, and Wireless Sensing System via Thermoelectric Fabrics

Xinyang He,Jiaxin Cai,Mingyuan Liu,Xuepeng Ni,Wendi Liu,Hanyu Guo,Jianyong Yu,Liming Wang,Xiaohong Qin,

期刊论文

System-level Pareto frontiers for on-chip thermoelectric coolers

Sevket U. YURUKER, Michael C. FISH, Zhi YANG, Nicholas BALDASARO, Philip BARLETTA, Avram BAR-COHEN, Bao YANG

期刊论文

Near-field radiative thermoelectric energy converters: a review

Eric TERVO, Elham BAGHERISERESHKI, Zhuomin ZHANG

期刊论文

A low power, eco-friendly multipurpose thermoelectric refrigerator

N. Jagan Mohan REDDY

期刊论文

Liquid metal material genome: Initiation of a new research track towards discovery of advanced energy

Lei WANG, Jing LIU

期刊论文